Synthesis and spectroscopic characterization of dimethyl-, di-n-butyl-, di-t-butyl- and diphenyl-tin(IV) derivatives of dipeptides: Crystal and molecular structure of di-n-butyltin(IV) glycylvalinate*

Brigitte Mundus-Glowacki,* Friedo Huber,* Hans Preut,* Giuseppe Ruisi† and Renato Barbieri†

*Universität Dortmund, Lehrstuhl für Anorganische Chemie II, Postfach 500 500, D-4600 Dortmund 50, Federal Republic of Germany, and †Università di Palermo, Dipartimento di Chimica Inorganica, 26 via Archirafi, I-90123 Palermo, Italy

The dipeptide complexes R₂SnL listed below have been synthesized: (a) Me₂SnL; H₂L = glycylalanine (H₂GlyAla), glycylvaline (H₂GlyVal), glycylmethionine (H₂GlyMet), glycyltryptophan (H₂GlyTrp), glycyltyrosine (H₂GlyTyr); (b) nBu₂SnL; H₂L= $H_2GlyAla$, $H_2GlyVal$; (c) $nBu_2SnL \cdot H_2O$; $H_2L =$ glycylglycine (H₂GlyGly), H₂GlyAla; (d) tBu₂SnL; $H_2L = H_2GlyAla$, $H_2GlyVal$; (e) $tBu_2SnGlyGly$ H_2O ; (f) Ph_2SnL ; $H_2L = H_2GlyAla$, $H_2GlyVal$, H₂GlyTyr, H₂GlyTrp; (g) Ph₂Sn(HGlyVal)₂. The crystal and molecular structures of nBu₂SnGlyVal have been determined by single-crystal X-ray diffraction. The polyhedron around tin is a distorted trigonal bipyramid, analogous to that of Et₂SnGlyTyr (see Vornefeld *et al.*, Appl. Organomet. Chem., 1992, 6: 75). According to infrared and 119 Sn (ΔE parameters) Mössbauer spectroscopic data the R₂SnL derivatives can be classified by their solid-state structure into two types which are distinguished by the nature of the axial carboxylate [(i) monodentate, nBu₂SnGlyVal; (ii) bidentate]. Bonding R₂SnL · H₂O and Ph₂Sn(HGlyVal)₂ has been discussed on the basis of vibrational Rationalization of the 119Sn Mössbauer parameters has been attempted by 'literal' point-charge model calculations of ΔE in the structural context described above. According to 13C NMR spectra, compounds Me, SnL are undissociated in methanol solutions, whilst dissociation is inferred for aqueous solutions, probably concerning the carboxyl and amino groups only. Five-coordination in methanol and aqueous solutions has been assumed for Me₂SnL from ¹¹⁹Sn NMR chemical shifts.

Keywords: Organotin, dipeptides, structures, X-ray diffraction, NMR, Mössbauer, infrared

INTRODUCTION

In a preceding paper, it has been shown that the complex Et₂SnGlyTyr assumes a distorted trigonal bipyramidal structure in the solid state, with a rather large C-Sn-C angle (131.4°). The order of magnitude of the Mössbauer nuclear quadrupole splitting parameters ΔE for the series of solid complexes Et₂SnL (L = dianion of dipeptide), indicated the occurrence of two classes of compounds characterized by different ranges of $\Delta E_{\rm exp}$ values, and these have been tentatively attributed to two sets of C-Sn-C angles occurring in these compounds.1 However, no structural effects of the nature of the dipeptide ligands [i.e. of the eventual steric hindrance due to the bulkiness of the groups bound to C(2); see Fig. 1 of Ref. 1] have been detected for the assumed variations of C-Sn-C angles. Moreover, in methanol solution any difference between individual complexes disappears, C-Sn-C angles being around the solidstate value detected for Et₂SnGlyTyr,¹ and analogous to data reported for Me₂SnGlyGly.²

Values of coupling constants $|^2J(^{119}Sn, \,^1H)|$, determined from 1H NMR spectra, gave estimates of C-Sn-C angles in Me₂SnL in the range 128–136° in methanol and aqueous solutions, which correspond to values from ^{119}Sn Mössbauer ΔE parameters (129.6–133.8°). The structural relationship of R₂SnL molecules in the solid state and in solution phase has been discussed.

^{*} Dedicated to Prof. Dr. Mult. Dr. h.c. Alois Haas

In order to clarify the trends detected in Et₂SnL, the work reported in the present paper was planned. Complexes R₂SnL have been synthesized, where R are alkyl groups with increasing bulkiness (Me, nBu, tBu), as well as phenyl (Ph) radicals; moreover, dipeptides H₂L have been selected which are characterized by increasing molecular volumes (i.e. $H_2L = H_2GlyGly$, H₂GlyAla, H₂GlyVal, H₂GlyTrp, H₂GlyTyr, H₂GlyMet; for abbreviations, see the abstract above). The crystal and molecular structures of a member of the series, nBu₂SnGlyVal, have been determined by single-crystal X-ray diffraction. The nature of the carboxylate and carbonyl groups bound to tin, in the solids, has been investigated by vibrational spectroscopy, and solid-state C-Sn-C angles have been estimated by ¹¹⁹Sn Mössbauer spectroscopic ΔE parameters. The species present in solution phases (methanol and water) have been studied essentially by ¹³C, ¹H and ¹¹⁹Śn NMR.

EXPERIMENTAL

Me₂SnCl₂, tBu₂SnCl₂ and Ph₂SnCl₂ were prepared by published methods;³⁻⁵ nBu₂SnO was obtained by hydrolysis of nBu₂SnCl₂⁶ dissolved in methanol with 15 % aqueous potassium hydroxide (KOH) solution. Dipeptides were commercial products. The solvents were dried by standard methods; the preparations were carried out under exclusion of moisture.

The derivatives R_2SnL , $R_2SnL \cdot H_2O$ and $R_2Sn(HL)_2$ were synthesized by the following methods.

(a) Alkoxide method

The alkoxides $R_2Sn(OMe)_2$ were synthesized under nitrogen from 20 mmol sodium methoxide and 10 mmol R_2SnCl_2 , each dissolved in 30 cm^3 methanol. After stirring at room temperature for 0.5 h the precipitated NaCl was filtered off. To the solution of $R_2Sn(OMe)_2$ 10 mmol dipeptide was added and the mixture was refluxed for 2–3 h.

(b) Sodium chloride method

The sodium salts of the dipeptides were prepared by stirring 20 mmol sodium methoxide and 10 mmol dipeptide in 70 cm³ methanol at room temperature until the mixture became clear. Then $10 \text{ mmol } R_2 \text{SnCl}_2$ was added and the solution was refluxed for 2-3 h.

- (b₁) Ph₂SnGlyTyr was prepared in the same way in ethanol at room temperature.
- (b₂) Ph₂Sn(HGlyVal)₂ was obtained by reaction of 2 mmol sodium methoxide and 2 mmol dipeptide in methanol; 1 mmol Ph₂SnCl₂ was added to the clear solution, which then was refluxed.

(c) Neutralization method

The compounds were synthesized by refluxing 5 mmol nBu₂SnO and 5 mmol dipeptide in the presence of 2 cm³ 2,2-dimethoxypropane in 50 cm³ methanol for 3 h.

The products were isolated as follows. Me₂SnGlyAla precipitated from the hot solution after 10 min; Me₂SnGlyTrp and R₂SnGlyTyr (R = Me, Ph) precipitated while cooling. The compounds were filtered off, and recrystallized from methanol in order to be purified from NaCl. The solutions of the other derivatives were concentrated to about 10 cm³ and diethyl ether was added if no product had precipitated. The solids were filtered off and, except in the case of the din-butyltin(IV) compounds, were recrystallized from ethanol. The nBu₂Sn derivatives were dried in vacuo at 80 °C on a waterbath.

Some of the dibutyltin(IV) compounds contain one molecule of water per molecule of dipeptide. The n-butyltin derivatives of glycylglycine and glycylalanine loose the water molecule on drying at 80 °C so that the water-free compounds are obtained. This process is reversible; the hydrates $nBu_2SnL \cdot H_2O$ (L = GlyGly,GlyAla) regained when the anhydrous compounds are stored in the laboratory in the open atmosphere. In the case of tBu₂SnGlyGly · H₂O under the same drying conditions, the water molecule is not removed. DTA measurements showed that the nbutyltin compounds loose water at about 50 °C. and tBu₂SnGlyGly·H₂O at 90 °C (Table 1). The preparation of compounds of the type R₂Sn(HL)₂ successful only in the case Ph₂Sn(HGlyVal)₂. Reactions of Me₂Sn, nBu₂Sn, tBu₂Sn or Ph₂Sn educts with glycylglycine and glycylalanine, as well as the reactions of Me₂Sn, nBu₂Sn or tBu₂Sn educts with glycylvaline, always lead to free dipeptide (H₂L) and to R₂SnL. All the products obtained are colourless.

The results of the elemental analyses are reported in Table 1, together with the estimated

Table 1 A	Analytical	data for	diorganotin(IV	 dei 	rivatives	of dipeptides ^a
-----------	------------	----------	----------------	-------------------------	-----------	----------------------------

	Method	Yield (%)	Ma	Microanalyt Found (Cal		Molecular weight: found in methanol.	
Compound	of preparation		Mp (°C)	N	С	Н	DMSO ⁺ (Calcd)
Me ₂ SnGlyAla	(a)	79.4	231 (dec)	9.5 (9.6)	28.8 (28.8)	4.9 (4.8)	308+ (292)
Me ₂ SnGlyVal ^b	(b)	81.8	248 (dec)	8.1 (8.7)	31.3 (33.6)	5.3 (5.6)	306 (321)
Me ₂ SnGlyMet	(a)	75.4	247 (dec)	7.9 (7.9)	30.7 (30.7)	5.3 (5.1)	361 (352)
Me ₂ SnGlyTrp	(b)	87.9	248 (dec)	10.1 (10.3)	43.3 (44.2)	4.5 (4.7)	192 (407)
Me ₂ SnGlyTyr	(a)	79.3	250 (dec)	7.3 (7.3)	41.0 (40.6)	4.4 (4.7)	377 (384)
nBu ₂ SnGlyGly·H ₂ O	(c)	76.7	51,° 222 (dec)	7.0 (7.0)	36.2 (36.0)	7.0 (6.8)	394 (399)
nBu ₂ SnGlyAla	(c)	61.7	237 (dec)	7.4 (7.4)	41.2 (41.5)	6.9(6.9)	381 (376)
nBu ₂ SnGlyAla H ₂ O	(c)	73.6	49,° 235	7.0 (7.1)	39.3 (39.6)	6.9 (7.6)	376 (394)
nBu ₂ SnGlyVal	(c)	75.5	267 (dec)	6.7 (6.9)	44.1 (44.5)	7.2 (7.4)	395 (406)
tBu ₂ SnGlyGly·H ₂ O	(b)	59.4	90,° 279 (dec)	7.2 (7.4)	37.2 (37.9)	6.8 (6.6)	205 (380)
tBu ₂ SnGlyAla	(b)	56.3	275 (dec)	6.9 (7.4)	39.5 (41.5)	6.5 (6.9)	354 (376)
tBu ₂ SnGlyVal	(b)	62.6	247 (dec)	6.6 (6.9)	43.1 (44.5)	7.3 (7.4)	387 (405)
Ph ₂ SnGlyAla	(b)	58.6	147; 211 (dec)	6.2 (6.7)	48.5 (49.0)	3.9 (4.3)	404 (416)
Ph ₂ SnGlyVal ^d	(a)	69.1	189; 217 (dec)	6.0(6.3)	47.2 (51.2)	4.7 (4.9)	434 (445)
Ph ₂ SnGlyTrp	(b)	67.4	226 (dec)	7.6 (7.9)	55.4 (56.5)	4.0 (4.3)	280 (531)
Ph ₂ SnGlyTyr	(b_1)	61.8	224 (dec)	5.2 (5.5)	54.3 (54.3)	4.0 (4.3)	437 (451)
Ph ₂ SnGlyMet	(c)	62.5	143-145	5.6 (5.9)	47.4 (47.8)	4.4 (4.6)	e
Ph ₂ Sn(HGlyVal) ₂	(b_2)	75.4	211 (dec)	8.9 (9.0)	50.2 (50.3)	5.7 (5.8)	e

^aH₂GlyGly, glycylglycine; H₂GlyAla, glycylalanine; H₂GlyVal, glycylvaline; H₂GlyMet, glycylmethionine; H₂GlyTrp, glycyltryptophan; H₂GlyTyr, glycyltyrosine. ^bContains 7% NaCl. ^cAccording to DTA/TG: liberation of 1 mol H₂O per 1 mol of compound. ^dContains 7.7% NaCl. ^cNot determined due to low solubility.

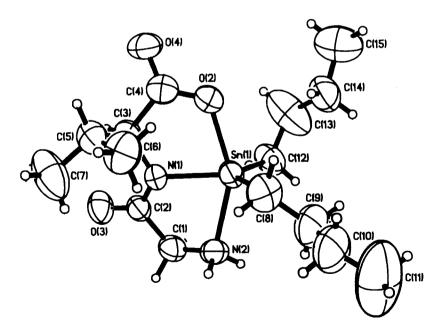


Figure 1 Molecular structure of nBu₂SnGlyVal: view of molecule showing atom numbering scheme.

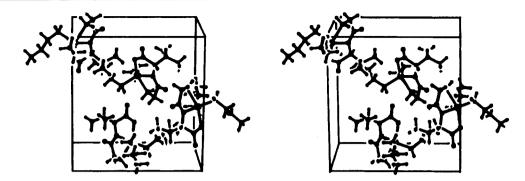


Figure 2 Structure of nBu₂SnGlyVal: stereoscopic view of the unit cell.

molecular weights, and melting and decomposition points. Me₂SnGlyGly, nBu₂SnGlyGly and Ph₂SnGlyGly have been prepared by literature methods.^{7,8}

Single crystals of nBu₂SnGlyVal were obtained by recrystallization from methanolic solution after addition of diethyl ether. Crystal data: $C_{15}H_{30}N_2O_3Sn$, $M_r=405.10$, orthorhombic, space group $P2_12_12_1$, a=980.4(9), b=1360.2(12), c=1413.6(14) pm, $V=1885(3)\times10^6$ pm³, Z=4, $D_x=1.427$ Mgm⁻³, F(000)=8320, graphitemonochromated MoK α radiation, $\lambda=71.073$ pm, $\mu=1.37$ mm⁻¹, T=291(1) K, crystal size

Table 2 Atomic coordinates of nBu₂SnGlyVal, and equivalent isotropic thermal parameters (A² × 10⁴) $U_{eq} = \frac{1}{3}(U_{11} + U_{22} + U_{33})$

	x	y	z	$U_{ m eq}$
Sn(1)	0.81083 (4)	0.97776 (3)	0.07532 (3)	555
N(1)	0.6787 (5)	0.8579 (3)	0.0930(3)	499
N(2)	0.8237 (5)	0.8904(3)	-0.0614(3)	642
O(2)	0.7288 (4)	1.0013 (3)	0.2137 (3)	693
O(3)	0.5217 (5)	0.7636 (3)	0.0164(3)	777
O(4)	0.5794 (5)	0.9480(4)	0.3199 (3)	858
C(1)	0.6905 (7)	0.8422 (4)	-0.0754(4)	688
C(2)	0.6229 (6)	0.8171 (4)	0.0189 (4)	548
C(3)	0.6204 (6)	0.8442 (4)	0.1869 (4)	563
C(4)	0.6423 (7)	0.9379 (5)	0.2449 (5)	678
C(5)	0.6777 (9)	0.7569 (5)	0.2439 (4)	763
C(6)	0.8329 (8)	0.7645 (6)	0.2569 (5)	981
C(7)	0.642(1)	0.6609 (6)	0.2012 (7)	1373
C(8)	1.0182 (7)	0.9616 (6)	0.1146 (5)	854
C(9)	1.1197 (7)	1.0052 (7)	0.0476 (7)	1156
C(10)	1.2658 (8)	0.9730 (9)	0.0723 (8)	1374
C(11)	1.368 (1)	1.013(1)	0.020(1)	2438
C(12)	0.7243 (8)	1.1050 (5)	0.0087 (5)	827
C(13)	0.693(1)	1.1886 (6)	0.0694 (7)	1399
C(14)	0.806(1)	1.2334 (6)	0.1243 (6)	1016
C(15)	0.754(1)	1.3149 (9)	0.1853 (7)	1436

 $\simeq 0.51 \text{ mm} \times 0.29 \text{ mm} \times 0.38 \text{ mm}, \omega/2\theta \text{ scan, scan}$ speed 5.0-14.6° min⁻¹ in θ, Nicolet R3m/V diffractometer, graphite-monochromated MoKa; lattice parameters from least-squares fit with 20 reflections up to $2\theta = 35.1^{\circ}$; six standard reflections recorded every 2.5 h, only random deviations; 3751 reflections measured $1.5^{\circ} \le \theta \le$ 25.0° , $-12 \le h \le 12$, $0 \le k \le 17$, $0 \le l \le 17$; after averaging ($R_{int.} = 0.027$): 3343 unique reflections, 2929 with $F \ge 3.0 \, \sigma(F)$; Lorenz-polarization correction, no absorption correction; systematic absences (h00) h = 2n + 1, (0k0) k = 2n + 1, (00l)l=2n+1 conform to space group $P2_12_12_1$; structure solution via Patterson function. ΔF syntheses and full-matrix least-squares refinement with anisotropic temperature factors for all non-H atoms and a common isotropic temperature factor for H atoms, which were placed in geometrically calculated positions (C-H 0.95 Å); refinement of F with 2929 reflections and 191 refined parameters; $w = 1.0/[\sigma^2(F) + 0.0005 F^2]; S = 1.20, \text{ final } R =$ $0.038, wR = 0.037, (\Delta/\sigma)_{max} = 0.08, refinement of$ the enantiomorph gave a higher R and S, no extinction correction; largest peak in final ΔF map $\pm 0.8(3)$ e Å⁻³, atomic scattering factors for neutral atoms and real and imaginary dispersion terms from International Tables for X-ray Crystallography; programs: SHELXTL PLUS¹⁰ and PARST.11 A molecule is shown in Fig. 1, together with the related numbering scheme, and a stereoview of the unit cell in Fig. 2. Positional parameters, and the equivalent values of the anisotropic temperature factors for the non-H atoms, are given in Table 2. Bond lengths and angles are reported in Table 3.

IR spectra (KBr pellets) were recorded on a Perkin-Elmer grating spectrometer PE 580 B. The melting and decomposition points were determined by DTA. ¹H NMR spectra have been

Table 3 Bond distances (Å), bond angles (°), least-squares planes, dihedral angles (°) and possible hydrogen bonds

Sn(1)-N(1)	2.097 (5)	C(1)-C(2)	1.528 (8)
Sn(1)-N(2)	2.272 (5)	C(3)-C(4)	1.530 (9)
Sn(1)-O(2)	2.140 (4)	C(3)–C(5)	1.541 (9)
Sn(1)-C(8)	2.119 (7)	C(5)–C(6)	1.54(1)
Sn(1)-C(12)	2.146 (7)	C(5)–C(7)	1.48 (1)
N(1)-C(2)	1.305 (7)	C(8)-C(9)	1.50(1)
N(1)-C(3)	1.456 (7)	C(9)-C(10)	1.54 (1)
N(2)-C(1)	1.474 (8)	C(10)-C(11)	1.35 (2)
0(2)-C(4)	1.287 (8)	C(12)-C(13)	1.46(1)
O(3)-C(2)	1.230 (7)	C(13)-C(14)	1.49 (1)
O(4)-C(4)	1.233 (8)	C(14)-C(15)	1.50 (1)
C(8)-Sn(1)-C(12)	125.3 (3)	N(1)-C(2)-C(1)	115.0 (5)
O(2)-Sn(1)-C(12)	97.6 (2)	N(1)-C(2)-O(3)	127.8 (6)
O(2)-Sn(1)-C(8)	97.8 (2)	N(1)-C(3)-C(5)	115.6 (5)
N(2)-Sn(1)-C(12)	94.0 (2)	N(1)-C(3)-C(4)	109.1 (5)
N(2)-Sn(1)-C(8)	96.6 (2)	C(4)-C(3)-C(5)	108.1 (5)
N(2)-Sn(1)-O(2)	151.3 (2)	O(4)-C(4)-C(3)	118.9 (6)
N(1)-Sn(1)-C(12)	115.8 (3)	O(2)-C(4)-C(3)	117.8 (6)
N(1)-Sn(1)-C(8)	118.7 (3)	O(2)-C(4)-O(4)	123.3 (6)
N(1)-Sn(1)-O(2)	77.0 (2)	C(3)-C(5)-C(7)	112.4 (6)
N(1)-Sn(1)-N(2)	74.3 (2)	C(3)-C(5)-C(6)	111.8 (6)
Sn(1)-N(1)-C(3)	116.7 (4)	C(6)-C(5)-C(7)	109.9 (7)
Sn(1)-N(1)-C(2)	119.6 (4)	Sn(1)-C(8)-C(9)	115.5 (5)
C(2)-N(1)-C(3)	120.8 (5)	C(8)-C(9)-C(10)	111.2 (8)
Sn(1)-N(2)-C(1)	107.3 (4)	C(9)-C(10)-C(11)	116.9 (10)
Sn(1)-O(2)-C(4)	117.4 (4)	Sn(1)-C(12)-C(13)	117.0 (6)
N(2)-C(1)-C(2)	111.5 (5)	C(12)-C(13)-C(14)	118.0 (8)
O(3)-C(2)-C(1)	117.2 (5)	C(13)-C(14)-C(15)	110.3 (8)

No.	Plane through atoms	Equation of the plane	χ^2
1 2	N(1), C(8), C(12), Sn(1) Sn(1), O(2), N(1), C(3), C(4)	-0.233x + 0.352y + 0.906z = 3.76 Å -0.7680x + 0.507y - 0.391z = 0.23 Å	0.0 568.7
3	Sn(1), N(1), N(2), C(1), C(2)	-0.698x + 0.650y - 0.300z = 2.74 Å	6838.7

Dihedral angles: 1,2, 89.8(2); 1,3, 83.2(2); 2,3, 10.5(1). Possible hydrogen bond

 $N(2) \cdots O(3)$ (1) $H(21)n \cdots O3$ (1) $N(2)-H(21)n \cdots O3(1)$ 2.962 (7) 1.985 (7) 166.2 (6)

Symmetry codes: (O) x, y, z; (1) +x+1/2, -y+1/2+1, -z.

obtained with a Perkin–Elmer R32 90 MHz instrument and ¹¹⁹Sn and ¹³C spectra by a Bruker AM300 spectrometer. Molecular weights were determined osmometrically. The Mössbauer spectra were measured with the apparatus and techniques described in the preceding paper, ¹ as well as in a previous publication. ¹² The results are reported in Tables 4–8.

RESULTS AND DISCUSSION

R_2Sn —dipeptide complexes in the solid state

The molecular structure of nBu₂SnGlyVal In nBu₂SnGlyVal, as well as in the diorganotin(IV) dipeptides Et₂SnGlyTyr,¹ Ph₂SnGlyGly,⁸

Table 4 Characteristic infrared vibrations (cm⁻¹)^{a, b}

Compound	ν(NH ₂)	ν(CO _{pept})	ν _{as} (COO)	$v_{\text{sym}}(\text{COO})$	Δν
Me ₂ SnGlyGly	3270 m, b	1675 vs	1605 vs	1410 m	195
** 0 0	3160 m,b				
Me ₂ SnGlyAla	3240 vs	1625 vs, b	1595 vs, b	1405 vs	190
M C CLVI	3110 vs	1660	1625	1205	250
Me ₂ SnGlyVal	3240 s	1660 vs	1635 vs	1385 vs	250
	3190 s				
M 0 01 M	3120 s	1645	1715	1207	220
Me ₂ SnGlyMet	3140 vs	1645 vs	1615 vs	1395 vs	220
M C CUT	3070 vs	1750 1	1.000	1205	225
Me ₂ SnGlyTrp	3600 m ^c	1650 s, sh	1620 vs	1395 vs	225
	3240 vs				
	3120 s				
Me ₂ SnGlyTyr	3330 s, sh ^d	1650 s, sh	1625 vs	1405 s	220
	3320 vs				
	3110 vs				
nBu ₂ SnGlyGly	3290 vs	1625 vs	1595 vs	1410 vs	185
	3240 vs				
	3140 vs				
nBu ₂ SnGlyGly · H ₂ O	3430 s, b ^e	1625 vs, b	1610 vs	1410 vs	200
	3260 s				
	3150 s				
nBu₂SnGlyAla	3230 vs	1620	vs, b	1395 vs	225
	3130 vs				
nBu ₂ SnGlyAla · H ₂ O	3420 s ^e	1630 vs	1615 vs	1395 vs	220
	3230 vs				
	3140 vs				
nBu ₂ SnGlyVal	3220 s	1650 vs	1620 vs	1390 vs	230
	3130 s				
tBu ₂ SnGlyGly·H ₂ O	3490 s ^e	1620	vs, b	1410 s	210
	3370 s ^e				
	3170 vs				
	3090 vs				
tBu ₂ SnGlyAla	3230 m	1640 vs	1625 vs	1400 s	225
2 3	3080 m				
tBu ₂ SnGlyVal	3220 s	1650 vs	1625 vs	1395 s	230
	3130 s			10,50	
Ph ₂ SnGlyGly	3200 m	1655 s	1625 vs	1410	215
Ph₂SnGlyAla	3220 s, b	1660 vs, sh	1630 vs	1400 s	230
Ph ₂ SnGlyVal	3240 s, b	1655 s, sh	1630 vs	1395 s	235
Ph ₂ SnGlyMet	3211 s) s, b	1397 s	223
- 112011 (ST) 1114V	3094 s	1020	, 5, 5	105. 0	223
Ph ₂ SnGlyTrp	3440°	1655 vs, sh	1635 vs	1395 vs	240
7 112011 O13 11 P	3220 s, b	1022 10, 011	1000 10	1375 16	240
	3130 m				
Ph ₂ SnGlyTyr	3450 s, b ^d	1655 vs, sh	1635 vs	1400 s	235
₂ 0.1013 + 31	3220 s	1555 15, 511	1000 10	1100 3	233
	3140 s				
Ph ₂ Sn(HGlyVal) ₂	3340 vs, b	1665 vs	1590 vs	1420 vs	170
- 12011(1101) Valj2	3250 vs, b	1000 48	1070 49	1720 43	1/0
	3230 va, U				

 $[^]aKBr$ pellets; bvs, very strong; s, strong; m, medium; w, weak; b, broad; sh, shoulder. cNH (indole). dOH (Tyr). $^cOH(H_2O).$

Table 5	119 S n	Mössbauer	parameters	of	R_2Sn	dipeptides	in	the	solid
state (T									

Compounda	δ^b (mm s ⁻¹)	$\frac{\Delta E^{c}}{(\text{mm s}^{-1})}$	Γ_1^d (mm s ⁻¹)	Γ_2^d (mm s ⁻¹)	
(I)					
Me ₂ SnGlyAla	1.20	3.27	0.81	0.83	
nBu ₂ SnGlyGly·H ₂ O	1.37	3.23	0.83	0.82	
nBu ₂ SnGlyAla	1.34	3.27	0.90	0.81	
nBu ₂ SnGlyAla·H ₂ O	1.29	3.00	0.96	0.85	
(11)					
Me ₂ SnGlyVal	1.12	2.59	0.85	0.87	
Me ₂ SnGlyMet	1.11	2.53	0.83	0.82	
Me ₂ SnGlyTyr	1.15	2.74	0.84	0.86	
nBu ₂ SnGlyVal	1.23	2.65	0.83	0.82	
tBu ₂ SnGlyGly · H ₂ O	1.37	2.65	0.87	0.91	
tBu ₂ SnGlyAla	1.39	2.70	0.86	0.87	
tBu ₂ SnGlyVal	1.36	2.56	0.80	0.79	
(III)					
Ph ₂ SnGlyAla	1.05	2.21	0.82	0.88	
Ph ₂ SnGlyVal	1.02	2.29	1.08	0.93	
Ph ₂ SnGlyMet	1.06	2.39	0.91	0.89	
Ph ₂ SnGlyTrp	1.03	2.30	0.99	0.86	

^aSample thickness was in the range 0.50–0.65 mg ¹¹⁹Sn cm⁻². (I)–(III): see discussion in the text. ^bIsomer shift with respect to Ca¹¹⁹SnO₃. ^cNuclear quadrupole splitting. ^dFull width at half-height of the resonant peaks, at greater and lesser velocity than the spectrum centroid respectively.

Me₂SnGlyMet¹³ and tBu₂SnGlyGly·H₂O,¹⁴ the polyhedron around the tin atom is a distorted trigonal bipyramid formed by the two organic groups and the tridentate dipeptide ligand, the latter having on the whole a planar skeleton (see Figs 1 and 2, Table 3, and Refs 1, 8, 11, 13, 14). The dihedral angle formed by the two chelate rings of the SnGlyVal skeleton (planes 2 and 3, Table 3) has a value of 10.5°. It is noticeably larger than the appropriate angle in other diorganotin dipeptides, e.g. 1.8° in Ph₂SnGlyGly,⁸ and 2.8° in tBu₂SnGlyGly.¹⁴ The ligand is axially bonded via the oxygen of the unidentate carboxylate group and the nitrogen of the terminal NH₂ group (bond angles O-Sn-N between 149.6° in tBu₂SnGlyGly·H₂O¹⁴ and 153.5° in Ph₂SnGlyGly⁸) and via peptide nitrogen occupying one of the equatorial positions. The latter bond is very short, being in the range found in other dipeptides R₂SnL (between 2.071 pm in Me₂SnGlyMet¹³ and 2.097 pm in nBu₂SnGlyVal). While the other molecules R₂SnL are linked by hydrogen bonds between the NH₂ group and the carboxyl and carbonyl oxygen atoms of two neighbouring units. the molecules nBu₂SnGlyVal are only connected by a hydrogen

bond between the NH₂ group N(2) and carbonyl oxygen O(3) (Table 3). In $tBu_2SnGlyGly \cdot H_2O^{14}$ the water molecule is fixed in the crystal packing by hydrogen bonds involving both hydrogen atoms of H₂O and the NH₂ group and the carboxyl and carbonyl oxygen.

Vibrational spectra

The data v_{as} (COO), and $\Delta v = v_{as} - v_{sym}$, reported in Table 4, would suggest the following structural details:

- (1) Me₂SnglyGly, Me₂SnGlyAla, nBu₂SnGlyGly, nBu₂SnGlyGly·H₂O: $v_{as}(COO) = 1595-1610 \text{ cm}^{-1}$, $\Delta v = 185-200 \text{ cm}^{-1}$; the carboxylate groups are bidentate and bridging. For the other compounds R₂SnL listed in Table 4; $v_{as}(COO) = 1615-1635 \text{ cm}^{-1}$, $\Delta v = 210-240 \text{ cm}^{-1}$; the carboxylate groups are monodentate. 15
- (2) Me₂SnGlyAla, nBu₂SnGlyGly, nBu₂SnGlyGly·H₂O, nBu₂SnGlyAla, nBu₂SnGlyAla·H₂O: ν(CO_{pepl}) < 1630 cm⁻¹. For the other compounds R₂SnL in Table 4: ν(CO_{pepl}) ≥ 1655 cm⁻¹. CO_{pepl} is involved in bonding in the five complexes listed above.

From these observations it may be inferred that bulky substituent groups bound to tin, as well as to the carbon atom C(2) of the ligand (Fig. 1), favour the formation of monomeric complexes, with monodentate carboxyls and non-coordinating peptide carbonyl, whilst the reverse would occur with sterically less hindering substituents. On the other hand, these assumptions would be at variance with respect to Et₂SnL, where carboxyl groups appear to be always monodentate, irrespective of the bulkiness of substituent groups at ligands.¹

The IR spectra, Table 4, of the water-containing di-n-butyltin(IV) compounds nBu₂Sn-GlyGly·H₂O and nBu₂SnGlyAla·H₂O show one broad and intensive v(OH) band at 3430 cm⁻¹ and 3420 cm⁻¹, respectively. In the case of tBu₂SnGlyGly·H₂O this v(OH) absorption is split into two bands, at 3490 and 3370 cm⁻¹. This should indicate differences in the mode of interaction of the water molecules and the Bu₂SnL moieties. In this context it should be remembered that nBu₂SnL·H₂O loses water at lower temperatures

(50 °C; Table 1) than tBu₂SnGlyGly·H₂O (90 °C). The water molecule in the latter complex is not bound to tin but is fixed by hydrogen bonds. ¹⁴ From the results of Mössbauer measurements of the di-n-butyltin compounds (*vide infra*), and the IR data on carboxylate- and carbonyl-oxygen coordination to tin, we generally exclude a coordination between tin and water in these compounds. Probably the mode of interaction between water and carboxyl/carbonyl oxygen and amino nitrogen is different in tBu₂SnGlyGly·H₂O and in the di-n-butyltin dipeptides containing water.

The IR spectra of $Ph_2Sn(HGlyVal)_2$ (Table 4) are characterized by a low value of $v_{as}(COO)$ as well as of Δv , which strongly suggests the occurrence of bidentate carboxyl (*vide supra*). Moreover, $v(NH_2)$ does not differ substantially from the value of the alkali-metal salts of dipeptides (3410, 3350 cm⁻¹), and $v(CO_{pept})$ would indicate that O_{pept} is not coordinating. A polymeric structure, with bridging carboxyl groups, may then be advanced in the present context. It is

Table 6 ¹³C NMR data of dimethyltin(IV) dipeptides: $\delta(ppm)$

$$H_2N - CH_2 - C - N - CH - COO - Sn(CH_3)_2$$
0 5 CH

Compound	Solvent	1+2	3	4	5	6	R*			
Me ₂ SnGlyVal	CD ₃ OD	178.60; 173.63	61.96	44.40	33.39	0.08; -0.74	19.97ª	18.64 ^a		
Me ₂ SnGlyMet	CD ₃ OD	179.36; 173.75	56.62	44.37	32.97	0.41; -0.37	30.45^{b}	15.29 ^c		
Me ₂ SnGlyAla	D_2O	184.16; 182.90	54.73	45.99	21.76	3.72; -3.15				
	_	176.48; 169.17	54.11	43.42	20.09					
Me ₂ SnGlyVal	D_2O	181.75; 181.21	63.84	45.83	34.81	3.07; -2.08	21.60a	20.30a		
	-	176.40; 169.44	63.78	43.24	32.87		19.89			
Me ₂ SnGlyMet	D_2O	182.35; 181.10	58.15	45.82	33.77	3.54; -2.72	32.56 ^b	17.08 ^c		
	2	176.70; 169.37	57.30	43.33	33.62		31.38	16.98		
Me ₂ SnGlyTyr	D_2O	180.56; 179.21	58.54	44.18	38.01	0.93; -0.31	155.81 ^d	132.47°	131.78 ^e	116.91 ^f
		174.88; 167.45	58.09	41.68	36.08		155.45	130.85	129.56	116.64
Me ₂ SnGlyTrp	D_2O	181.10; 174.86	58.98	44.22	27.10	0.92; -1.21	137.28 ^g 120.52 ^l	129.63 ^h 119.33 ^m	125.41 ⁱ 113.32 ⁿ	122.93 ^k 110.43 ^c

* Assigned as follows:
a,
$$CH_3$$
, b, CH_2 ; c, CH_3 ; d, e, f, f f d OH ; g - o , f f g - o , f g - o

worth noting that this type of bonding has been found only in this Ph₂Sn derivative of dipeptides having a bulky group at C(2), and is actually the only R₂Sn(HL)₂ species obtained so far.¹

119Sn Mössbauer spectra

The isomer shift (δ) data in Tables 5 and 8 are typical of diorganotin derivatives; ^{16, 17} moreover, the narrowness of the linewidths, Γ , implies the general occurrence of single tin sites in each

compound, as well as of multiple sites with corresponding environments. The experimental nuclear quadrupole splitting parameters, ΔE , reported in Table 5 describe three classes of compounds:

(I) Table 5, $\Delta E = 3.00 - 3.27 \text{ mm s}^{-1}$; Alk₂Sn-GlyGly, Alk = Me, nBu, nOct, $\Delta E = 3.32 - 3.43 \text{ mm s}^{-1}$; $^{-1}$; Et₂Sn-GlyAla, -AlaAla and -GlyTyr, $\Delta E = 2.87 - 3.14 \text{ mm s}^{-1}$; 1

Table 7 ^{1}H and ^{119}Sn NMR data of dialkyltin(IV) dipeptides, and free dipeptides; δ (ppm); $|^{2}J(^{119}Sn, \, ^{1}H)|$ and $|^{3}J(^{119}Sn, \, ^{1}H)|$ (Hz)

$$NH_2 - CH_2 - C - N - CH - COOSnR_2$$

Compound	Solvent	R	a	b	c	d	e	$^2J/^3J$	¹¹⁹ Sn
$H_2GlyGly$ (R' = H)	D ₂ O		3.84	3.90					
nBu ₂ SnGlyGly	CD ₃ OD	0.77 - 1.67	3.42	3.80					
tBu ₂ SnGlyGly	CD_3OD	1.37	3.51	3.84				102	
$H_2GlyAla$ $(R' = CH_3)$	D_2O		3.76	4.08	1.29				
Me ₂ SnGlyAla	DMSO-d6	0.59	a	3.80	1.09			82	
		0.66						84	
	$D_2O(1)^b$	0.71	3.33	4.11	1.24			84	
	- 2 - (-)	0.78						82	
	(2) ^b	0.71	3.46	4.07	1.25			82	-93.8
	(-/	0.80	3.73					82	
nBu ₂ SnGlyAla	CD_3OD	0.78 - 1.69	3.36	4.14	1.34				
tBu ₂ SnGlyAla	CD_3OD	1.37	3.41	4.18	1.35			102	
	5	1.30						101	
$H_2GlyVal$ $(R' = CH(CH_3)_2$	D_2O		3.78	4.00	2.02	0.89 0.83			
Me ₂ SnGlyVal	DMSO-d6	0.51	a	3.84	1,98	0.91		78	
inegonony var	Diviso do	0.67		0.0.	1,70	0.73		80	
	CD_3OD	0.71	3.51	4.23	2.22	1.07		78	-89.4
	02,02	0.84	2.01	0		0.88		78	٠,,,
	$D_2O(1)^b$	0.78	3.39	3.59	2.21	1.05		80	
	- 2 - (-)	0.95				0.90		82	
	(2) ^b	0.69	3.33	3.62	2.04	0.88		80	-94.4
	()	0.78	3.86	4.07		0.85		80	
		0.86							
		0.98							
nBu ₂ SnGlyVal	CD_3OD	0.71 - 1.69	3.34	4.14	2.13	1.02			
	,					0.84			
tBu ₂ SnGlyVal	CD_3OD	1.36	3.27	4.22	2.22	1.17		105	
	-	1.51				1.03		98	
H ₂ GlyMet	D_2O		3.85	4.20	2.50	1.96	2.03		
$(\mathbf{R'} = \underset{\mathbf{c}}{\mathbf{CH}_2} - \underset{\mathbf{d}}{\mathbf{CH}_2} -$	-3—CH₃)								

Table 7	continued

Compound	Solvent	R	a	b	c	d	e	$^2J/^3J$	¹¹⁹ Sn
Me ₂ SnGlyMet	DMSO-d6	0.60	a	3.94	2.20	2.20	2.00	82	
		0.67						82	
	CD_3OD	0.74	3.44	4.27	3.39	2.24	2.06	84	-93.8
		0.86						82	
	$D_2O(1)^b$	0.78	3.52	4.33	2.40	2.40	2.04	80	
		0.87						80	
	(2) ^b	0.77	3.51	4.26	2.19	2.19	2.04	80	-97.1
		0.88	3.84				2.07	80	
H₃GlyTyr	D_2O		3.97	4.64	3.01	7.28			
$(R' = CH_2 - Ph_d - C$	OH)								
Me ₂ SnGlyTyr	DMSO-D6	-0.14	a	4.04	3.20	6.57		80	
		0.64						78	
	$D_2O(1,2)^b$	-0.02	3.48	a	c	7.00		80	
		0.64	3.66					78	
Me ₂ SnGlyTrp	DMSO-d6	-0.49	3.38	4.16	3.22	7.18		79	
$(R' = \underset{c}{CH_2} - Trp)$		-0.44						77	
	$D_2O(1,2)^b$	-0.50	3.52	a	c			80	
		0.58						78	

^aSuperimposed by signals of non-deuterated solvent molecules.

Table 8 ¹¹⁹Sn Mössbauer parameters of representative compounds of the R_2Sn dipeptide series, in frozen solutions $(T \approx 77 \text{ K})$

Compounda	$\delta^b \atop (mm\ s^{-1})$	ΔE^{c} (mm s ⁻¹)	Γ_1^{d} (mm s ⁻¹)	Γ_2^{d} (mm s ⁻¹)
Solutions in me	thanole			
Me ₂ SnGlyVal	1.21	3.09	0.90	0.81
Me ₂ SnGlyMet	1.22	3.13	0.93	0.80
Me ₂ SnGlyGly ^f	1.23	3.23	1.02	0.87
Solutions in wat	er ^{e, g}			
Me ₂ SnGlyVal	1.19	2.98	0.88	0.80
Me ₂ SnGlyMet	1.19	2.99	1.07	0.93
Me ₂ SnGlyGly ^h	1.24	3.27	0.99	0.84
Solutions in wat Me ₂ SnGlyVal Me ₂ SnGlyMet	1.19 1.19	2.98 2.99	0.88 1.07	0.80 0.93

^aThe spectra have been measured on absorber samples from freshly prepared solutions; see Ref. 12.

- (II) Table 5, $\Delta E = 2.53-2.74 \text{ mm s}^{-1}$; Et₂Sn-GlyGly, -GlyVal, -ValVal and -Gly-Met, $\Delta E = 2.46-2.69 \text{ mm s}^{-1}$; 1
- (III) Table 5, $\Delta E = 2.21-2.39 \text{ mm s}^{-1}$; Ph₂Sn GlyGly, $\Delta E = 2.39 \text{ mm s}^{-1}$ (average value, this work and Ref. 18).

These data reflect the trend observed for infrared group vibrations referred to in the preceding text, in the sense that a definite influence neither of steric factors, nor of the occurrence of donor atoms in side chains, must be considered in order to rationalize the whole set of ΔE data. However, we have tried here to apply the pointcharge model in order to find confirmation for the structural proposal advanced on the basis of infrared spectroscopy which implies carboxylate groups axially coordinating tin to produce trigonal bipyramidal geometries (according to the X-ray diffraction structure). Calculations have been effected as described in the preceding paper, according to literature reports; 16, 17, 19, 20 partial nuclear quadrupole splittings employed in the calculations are from the literature 16, 17, 19-21 (see Ref. 1; moreover, $\{Ph\}^{tbe} = -0.98 \text{ mm s}^{-1}$).

We have established that ΔE values in Et₂SnL may be related to the magnitude of the angles C-Sn-C;¹ here we correlate the variations of ΔE

^bD₂O: (1) measurement made immediately after dissolution; (2) measurement after six weeks.

^cAssignment not possible.

b-d See footnotes b-d to Table 5.

 $^{^{\}rm e}$ The concentration was in the range 36–65 mmol dm $^{-3}$ for Me₂SnGlyVal. A saturated solution was employed for Me₂SnGlyMet (<36 mmol dm $^{-3}$).

fRef. 2.

⁸The concentration was in the range 36–100 mmol dm⁻³. The parameters reported here are average values measured in (frozen) solutions in redistilled water, as well as in 0.3% (w/v) of an aqueous solution of the surfactant 2-hydroxypropylcellulose, and in Klucel (0.3% 2-hydroxypropylcellulose, 0.9% NaCl, by wt). See Ref. 2.

^hRef. 2 and this paper, average values.

with the nature of axially bonded carboxylate groups. In fact, the following $\Delta E_{\rm calcd}$ values are obtained, for regular trigonal bipyramidal structures, using the 'literal' version of the point-charge model:

- (i) Alk₂SnL: employing the partial nuclear quadrupole splitting (pqs) value $\{COO\}^{tba} = +0.075 \text{ mm s}^{-1},^{18,20}$ indicative of bridging (bidentate) behaviour, the value $\Delta E_{calcd} = -3.09 \text{ mm s}^{-1}$ is obtained, ¹⁸ which would correspond to ΔE_{exp} of class (I) as listed above.
- (ii) Alk₂SnL: employing the pqs value $\{O=C-O\}^{tba} = -0.10 \text{ mm s}^{-1},^{21} \text{ i.e. the}$ value for monodentate carboxyl, $\Delta E_{calcd} = +2.78 \text{ mm s}^{-1}$ results, which would agree with ΔE_{exp} for group (II) above.
- (iii) Ph₂SnL: with {COO}^{tba} = +0.075 mm s⁻¹, $\Delta E_{\text{calcd}} = -2.70 \text{ mm s}^{-1} \text{ 18}$ is obtained, while with {O=C-O}^{tba} = -0.10 mm s⁻¹, $\Delta E_{\text{calcd}} = -2.39 \text{ mm s}^{-1}$. The latter value exactly corresponds to ΔE_{exp} for group (III) above.

In conclusion, these calculations would indicate the X-rav molecular structure nBu₂SnGlyVal is reflected by the other members of the R₂SnL series of dipeptide complexes investigated here, also in accordance with previous work. Infrared and Mössbauer spectroscopic data have been employed in order to state and interpret fine structural details, such as the nature of ligand groups and the angles in coordinated R₂Sn moieties (although in some cases the data from the two techniques are contrasting). Moreover, these fine effects apparently cannot be safely interpreted by a simple rationale based upon stereochemical effects.

R₂Sn-dipeptide complexes in the solution phase: ¹³C, ¹H, ¹¹⁹Sn NMR spectra, and ¹¹⁹Sn Mössbauer spectra

The ¹³C NMR data for Me₂SnL (Table 6) give the following information:

- (1) in CD₃OD solution, chemical shifts (δ) for COO and CO_{pept}, as well as δ for peptide CH₂ and CH, consist of individual values, which suggest the occurrence of a single species, presumably the coordinated ligand, having a structure corresponding to that of the solid-state complexes.^{1,2}
- (2) in D₂O solution, the above-mentioned δ signals are generally doubled, which would

be consistent with the partial dissociation of the dipeptide complex.²

These ¹³C data strictly correspond to findings concerning Me₂SnGlyGly in CD₃OD and D₂O solutions;² accordingly, the partial dissociation of the dipeptide assumed for Me₂SnGlyGly in D₂O, where only the Sn-N_{pept} bond would be maintained, may be advanced also for the Me₂SnL complexes investigated here.

The ¹H NMR spectra (Table 7) give essentially analogous information on the bonding of the dipeptide to tin centres in CD₃OD and D₂O solutions.² Moreover, the application of Lockhart's relationship between C-Sn-C bond angles and coupling constants |²J(¹¹⁹Sn, ¹H)|²² gives the following results:

- (1) Me₂SnL (in CD₃OD and D₂O): $|^2J| = 78-84$ Hz (Table 7); C-Sn-C = 128-136°.
- (2) tBu_2SnL (in CD_3OD): $|^2J| = 102-105$ Hz (Table 7); C-Sn-C=166-172°.

Angles as for (1) may be attributed also to Me₂SnGlyGly through the reported $|^2J|$ data.² It then appears that, in CH₃OH solution, monomeric species Me₂SnL occur (from osmometry, Table 1), where L are coordinated tridentate ligands (from 13 C NMR, *vide supra*) and tin atoms assume the coordination number five (from $\delta(^{119}$ Sn), 23 Table 7 and Ref. 2).

The C-Sn-C angles of tBu₂SnL in CD₃OD, reported in (2) above, seem to be overestimated by Lockhart's correlation. In fact, the latter has been established for Me₂Sn compounds,²² although employed also for a Bu₂Sn derivative;²⁴ moreover, a similar relationship has been proposed for n-butyltin compounds.^{23,25}

The C-Sn-C angles of Me₂SnL in methanol have been estimated also from the 119Sn Mössbauer parameters ΔE in the frozen solutions (Table 8), by the 'literal' version of the pointcharge model employed in the preceding paper.¹ The range of values $C-Sn-C=129.6-133.8^{\circ}$ has been calculated, which corresponds to the data extracted from $|{}^{2}J({}^{119}Sn, {}^{1}H)|$ (vide supra). According to the ΔE values in Table 8, C-Sn-C angles for Me₂SnL in aqueous solution would strictly correspond to data in methanol. To this purpose, it must be recalled that ¹H NMR spectra in aqueous solutions evidence the occurrence of two distinct tin-containing species, characterized by coincident $|{}^{2}J({}^{119}Sn, {}^{1}H)|$ coupling constants, which are in turn quite similar to [2J] values measured in methanol solutions (Table 7). This circumstance, in conjunction with the narrowness of the Mössbauer resonance linewidths (Table 8), enables us to assess that all Me₂SnL species in the various solution phases are strictly correlated, as far as the C-Sn-C bond angle is concerned.

Acknowledgements Financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Ministero per l'Università e la Ricerca Scientifica, and the Consiglio Nazionale delle Ricerche, Progetto Chimica Fine e Secondaria II, and gifts of dipeptides by Degussa, Frankfurt, are gratefully acknowledged.

REFERENCES

- Vornefeld, M, Huber, F, Preut, H, Ruisi, G and Barbieri, R Appl. Organomet. Chem., 1992, 6: 75
- Ruisi, G, Silvestri, A, Lo Giudice, M T, Barbieri, R, Atassi, G, Huber, F, Grätz, K and Lamartina, L J. Inorg. Biochem., 1985, 25: 229
- Taimsalu, P and Wood, J L Spectrochim. Acta, 1964, 20: 1043
- Krause, E and Weinberg, K Ber. Deut. Chem. Ges., 1930, 63: 381
- Gilman, H and Lewis, A G, Jr J. Org. Chem., 1957, 22: 368
- 6. Johnson, O H and Fritz, H E J. Org. Chem., 1954, 19: 74
- Pellerito, L, Lo Giudice, M T, Ruisi, G, Bertazzi, N, Barbieri, R and Huber, F *Inorg. Chim. Acta*, 1976, 17: L21
- 8. Huber, F, Haupt, H J, Preut, H, Barbieri, R and Lo Giudice, M T Z. Anorg. Allg. Chem., 1977, 432: 51

- Ibers, J A and Hamilton, W C (eds) International Tables for X-ray Crystallography, vol IV, Kynoch Press, Birmingham, UK, 1974, Tables 2.2B and 2.3.1
- Sheldrick, G M SHELXTL PLUS (Release 2) for Nicolet R3m/V Crystallographic System. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data, University of Göttingen, Germany, 1987
- 11. Nardelli, M Comput. Chem., 1983, 7: 95
- Barbieri, R and Musmeci, M T J. Inorg. Biochem., 1988, 32: 89
- Preut, H, Mundus, B, Huber, F and Barbieri, R Acta Cryst., 1986, C42: 536
- Preut, H, Mundus, B, Huber, F and Barbieri, R Acta Cryst., 1989, C45: 728
- Deacon, G B and Phillips, R J Coord. Chem. Rev., 1980, 33: 227
- Bancroft, G M and Platt, R H Adv. Inorg. Chem. Radiochem., 1972, 15: 59
- Parish, R V Structure and bonding in tin compounds. In: Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol 1, Long, G J (ed.), Plenum Press, New York, 1984, p 527
- Barbieri, R, Pellerito, L and Huber, F Inorg. Chim. Acta, 1978, 30: L321
- Clark, M G, Maddock, A G and Platt, R H J. Chem. Soc., Dalton Trans., 1972: 281
- Bancroft, G M, Kumar Das, V G, Sham, T K and Clark, M G J. Chem. Soc., Dalton Trans., 1976, 643
- Barbieri, R, Silvestri, A, Huber, F and Hager, C D Canad. J. Spectrosc., 1981, 26: 194
- Lockhart, T P and Manders, W F *Inorg. Chem.*, 1986, 25:
- Holecek, J, Nádvorník, M, Handlír, K and Lycka, A J. Organomet. Chem., 1986, 315: 299
- 24. Lockhart, T P Organometallics, 1988, 7: 1438
- Holecek, J and Lycka, A *Inorg. Chim. Acta* 1986, 118: L15